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Abstract In this paper, we present a framework for the implementation of
multi-agent-systems for production control of complex manufacturing sys-
tems. We present the results of a requirement analysis for production control
systems for complex manufacturing systems; then we describe the framework
design criteria. Our framework supports the inclusion of distributed hier-
archical decision-making schemes into the production control. Furthermore,
in order to increase the coordination abilities of multi-agent-systems, we
follow the decision-making and staff agent architecture suggested in the
PROSA reference architecture. We indicate the usage of the framework for
designing and implementing an agent-based production control system for
semiconductor manufacturing processes in a case study.

Keywords Agent-based analysis and design Æ Frameworks Æ Production
control Æ Complex manufacturing systems Æ Software development

1 Introduction

Production control tasks for complex manufacturing processes are still
challenging because of the complexity of the related decision tasks and
information systems. A lot of work has done in this area over the last
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20 years; however it seems that we are still far away from an ultimate
solution.

Currently, it seems that the improvement of operational processes creates
the best opportunity to realize the necessary cost reductions in manufac-
turing systems. Therefore, the development of efficient planning and control
strategies is highly desirable in the manufacturing domain. In the course of
the development of new planning and control algorithms, the researchers
and developers have to take into account the new opportunities in advanced
software technologies. However, because of the widely used legacy software
systems in enterprises, it is hard to integrate more advanced production
control strategies into real-world situations.

Software agents allows for the implementation of distributed planning
and control algorithms. The agents are able to act autonomously; on the
other hand their communication abilities ensure a cooperative behavior and
the fulfillment of global system goals. Agents support concurrent execution
of different production control algorithms and lead to robust and scalable
production control applications. However, even if we can choose among a
lot of agent-tools and agent frameworks (see for example JADE 2004; FIPA-
OS 2004; Zeus 2004; Vrba 2003) it is still quite difficult to implement multi-
agent-systems. This difficulty is mainly caused by the fact that agent-building
tools are generic and domain independent. On the other hand, for the
manufacturing domain, we found common features like spatial and temporal
problem decomposition through the use of distributed hierarchies that
should be supported by a large class of production control systems. There-
fore, it makes sense to go a step beyond the existing tools and design and
implement a framework for this class of production control systems.

The paper is organized as follows. In the next section we provide the
results of a requirement analysis for production control issues in complex
manufacturing systems. Then we discuss related work. We describe impor-
tant features of the Manufacturing Agency (ManufAg) framework. We
complete the paper by indicating the use of the framework for implementing
a production control application for the semiconductor manufacturing
production control domain.

2 Requirement analysis

We perform a two-step requirement analysis. The objective of the domain
analysis is the development of a domain model that contains the knowledge
of a domain in a systematic way. The domain analysis includes a description
of the domain, the acquisition of domain knowledge, and a structured
description of constant and variable properties of the domain under con-
sideration. Our approach for deriving a domain design is similar to the
scope, commonality, and variability (SCV) analysis suggested by Coplien
et al. (1998).

In a second step, a domain design is necessary. The key task of the
domain design is the transformation of the results of the domain analysis
into reusable, implementation oriented artifacts and the design of relations
between these artifacts.
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2.1 Domain analysis

A complex manufacturing system is defined as a system whose components
are smaller production systems in their own right, i.e., a complex manu-
facturing system is a relation on interconnected manufacturing sub systems
(cf. Mesarovic et al. 1970). We are interested in the domain of production
control of complex manufacturing systems. Production control refers to
dispatching and scheduling of jobs on scarce resources, i.e., machines. We
are not interested in long-term and mid-term planning; however, we have to
take into account that planning decisions influence the production control
decisions. We denote the machinery of the manufacturing system as basis
system. The basis process is given by the allocation of resources by jobs in a
time dependent manner. Beside the basis system and basis process we con-
sider the production control system and the production control process. The
production control process is responsible for dispatching and scheduling
decisions, i.e., to answer the question which job should proceeded in which
time slot on a certain machine.

We use the terms basis system, basis process, production control system,
and production control process in order to structure fix and variable prop-
erties of the domain.

We structure the domain knowledge according to the following dimen-
sions (Bussmann 2003):

1. a set of production goals,
2. a decision space that includes especially various types of restrictions,
3. a set of decision rules ranging from myopic dispatching rules over

negotiation-based schemes to more advanced scheduling approaches.

The production goals are usually tardiness related, i.e., our production
control approach has to make sure that due dates are met by the jobs.
Furthermore, a certain throughput has to be achieved. Note that opposite to
mass production, tardiness related production objectives require that the
jobs are tracked and controlled individually.

The decision space is formed by the following restrictions (cf. Uzsoy et al.
1994; Ovacik and Uzsoy 1997 amongst others):

– a diverse product mix,
– re-entrant process flows,
– parallel machines with complicated dedication practices,
– sequence-dependent set up times,
– a mix of different process types, including batch processes,
– an inclusion of preventive maintenance issues into production control,
– prescribed due-dates for the jobs,
– precedence constraints for the different operations of a single job
according to the routes of the different products.

Note that the decision space is formed by restrictions from both the basis
system and the basis process.
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Decision rules are necessary to solve the problem which job should be
processed next on a given machine. The decision rules try to fulfill the
production goals subject to the restrictions of the manufacturing system. In
some situations, very simple decision rules like dispatching rules or contract
net type negotiation procedures are successful. In other situations, it seems to
be more appropriate to use more centralized scheduling schemes.

We start with describing constant domain properties. Jobs are included in
our domain as dynamic entities that have own goals (i.e., single jobs try to
meet their own due date as much as possible). Machines are responsible for
the processing of the jobs. Because machines used in complex manufacturing
systems usually are expensive, the machines try to utilize their capacity as
much as possible. The description of the constant properties of the basis
system and basis process is completed by specifying the products given by
routes and assignments from machines to single operations. Note that or-
ders, resources, and products are also the main ingredients of the PROSA
reference architecture for holonic production control systems (Van Brussel
et al. 1998). From a production control point of view each control system of
a complex manufacturing system contains a dispatch component that decides
which job has to proceed next on a given available machine. Of course, this
decision may be influenced by higher-level decisions.

Decisions that are based on automated material handling systems have to
taken into account in more advanced manufacturing systems (Babiceanu
et al. 2004).

Because we consider complex production systems, we have to face with a
segmentation of the basis system into different sub systems. The production
control of each sub system is performed using local data. In order to achieve
a production control with respect to global goals, coordination has to take
place between the different sub systems and the related sub processes.
Interactions between different jobs and machines are also necessary in order
to make optimal batch and set up decisions. Here, a batch is defined as a
collection of jobs that are processed at the same time on the same machine.

The following flexible domain properties exist. We can use hierarchies in
order to allow a distributed decision-making (Schneeweiss 2003). The dis-
tribution can be performed in a spatial and temporal manner. On the other
hand, pure heterarchical approaches are possible. According to this struc-
turing from an organizational point of view, flexibility is necessary in order
to use various types of production control schemes. The applied production
control scheme may also depend on a specific part of the basis system, i.e., a
different scheme is eventually necessary for bottleneck machines. Flexibility
has to be ensured with respect to batch production. In this situation, beside
the assignment and sequencing task for jobs to machines, we have to solve
the batch formation problem, i.e., we have to decide which jobs form a
certain batch. Furthermore, we have to fix the concrete form of the routes.

The constant and flexible characteristics of complex manufacturing sys-
tems are represented in Fig. 1 by a property diagram (Czarnecki and Eise-
necker 2000). We distinguish between permanent (indicated by bullets) and
optional properties (denoted by circles) in this type of diagrams.

Manufacturing systems change over time. For example, based on different
customer behavior the product mix is a subject of changes. Furthermore,
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dynamic bottlenecks occur from time to time as a result of machine break-
downs and product mix changes. Therefore, the used production control
strategies should be adaptable to specific situations on the shop-floor in
order to allow for a situation-dependent decision-making.

Complex manufacturing systems are dynamic and stochastic, i.e., new
orders arrive in manufacturing systems over time, machine break-downs
happen, or the priority of customer orders may change. This is the reason for

Complex Manufacturing Production Control
System
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Fig. 1 Property diagram for the complex manufacturing domain
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problems related to performance assessment of manufacturing systems.
Discrete event simulation offers a way to model the appropriate dynamic and
stochastic behavior of manufacturing processes. Hence, a performance
assessment of novel production control schemes is possible by means of
emulation and should be supported by the production control system
(Brennan and O 2000).

2.2 Domain design

From the domain analysis it follows that we need decision-making units that
could be arranged into hierarchies. Furthermore, the decision-making is
based on local data and therefore coordination schemes are necessary. Beside
the decision-making entities, different types of decision rules are necessary.

Because of the distributed decision-making, agents are appropriate soft-
ware artifacts in order to implement the resulting production control system
(Schneeweiss 2003). Agents have by definition communication capabilities;
hence, coordination mechanism can be implemented quite easily (cf. the
literature in the book edited by Weiss (1999)).

Following the PROSA reference architecture, we distinguish between
decision-making agents that are the software representation of the decision-
making entities in Fig. 1 and staff agents that encapsulate the decision rules.

The decision-making agents have to allow the representation of hierar-
chies. So far, there exist several prototype multi-agent-systems that are based
on the PROSA reference architecture (see, for example, Heikkilä et al. 2001;
Indrayadi et al. 2002). However, so far no framework exists that supports the
development of such type of multi-agent-systems in a generic way.

3 Literature review and analysis of existing frameworks

The analysis and design step for agent-based production control systems is a
highly non-trivial task that should be based on an analysis of the decision
problems to be solved (Bussmann et al. 2001; Bussmann 2003). Recent
surveys of existing multi-agent-systems in the manufacturing domain are
provided by Shen and Norrie (1999) and Caridi and Cavalieri (2004). Al-
though a couple of systems exists (for example the system by Ünver and
Anlagan 2002), it seems to be still difficult to implement an agent-based
production control system starting from scratch.

Frameworks for developing multi-agent-systems are widely accepted and
provide support for easy and fast agent development. However, most of the
existing frameworks are generic with a focus on infrastructure issues and
only rarely dedicated to a specific domain.

The widely used frameworks JADE (2004); FIPA-OS (2004); Zeus (2004)
have been assessed with respect to the capabilities to easily adapt the agent
model and the underlying system to a specific field of interest; especially to
the manufacturing control domain. We identified four key features that are
crucial for agent systems in manufacturing control in order to decide whether
the frameworks are suitable or not:
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– representation of agent hierarchies,
– representation of decision rules,
– modeling of process restrictions,
– support for discrete event simulation.

Agent hierarchies are necessary to model multi-agent societies for pro-
duction control of complex production systems.

The capability to represent decision rules is essential to enable the agent
to decide what is the next action based on different criteria, its own
knowledge, and the environmental circumstances.

As explained in sect. 2, manufacturing control has to take into account a
lot of restrictions of the controlled processes. Therefore, we look for an easy
way to model these restrictions in our framework. However, appropriate
modeling of process restrictions is a challenging and time-consuming task,
which is essential for the domain of complex manufacturing systems. The
framework should provide support for the modeling efforts.

Discrete event simulation is necessary to assess the performance of the
production control schemes developed by using the existing framework. A
simulation tool is required for the emulation of the dynamic and stochastic
behavior of the manufacturing system to be controlled.

In Table 1, we investigate whether the frameworks JADE, FIPA-OS, and
Zeus support the key features or not.

After an analysis of some generic frameworks, it turns out that major
efforts are required in order to implement multi-agent-systems for produc-
tion control using the generic frameworks.

Especially agent hierarchies have to be modeled by the system designer. It
is not clear whether such a change of the agent organization could be easily
handled by the runtime environments of the corresponding agent-based
systems. The runtime environment provides an infrastructure for multi-
agent-systems. It is necessary to change internals within the runtime envi-
ronment regarding the communication and agent service handling in case of
agent hierarchies.

Only the Zeus-Framework provides several types of organizational
relationships within agent societies. However, hierarchical structures are not
supported. Another feature of Zeus is an agent-to-legacy system interface to
facilitate inter-operability with existing software systems. This feature could

Table 1 Requirements vs. existing frameworks

Framework/Tool JADE FIPA-OS Zeus

Evaluation criteria
Agent hierarchies No No No
Capabilities of
representing different
decision rules

Integration
of JESS (an
expert system)

Integration
of JESS (an
expert system)

Deliberative and
goal-directed agents

Support of discrete
event simulation

No No Agent-to-legacy
system interface

Modeling of process
restrictions

No No Agent tasks with
constraints
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be used to implement a coupling interface between multi-agent-systems
based on Zeus and an appropriate discrete event simulation tool.

Furthermore, only Zeus provides a generic technique to describe con-
straints for agent tasks that could be used to model typical restrictions of the
complex manufacturing system domain.

Another source of problems is the poor (run time) performance of Java
programming language-based multi-agent-systems. This is also true for BDI-
type agent toolkits like dMARS (D’Inverno et al. 2004) and JACK (Howden
et al. 2001). Among the Java programming language-based frameworks and
tools only the JADE Framework is able to treat a large amount of operating
agents with common computational resources as discussed by Vrba (2003).
FIPA-OS and Zeus failed the performance evaluation with a large number of
agents. JADE is also the only tested framework still supported.

It seems to be possible to enrich existing frameworks by more domain
specific knowledge and concepts. This approach is suggested, for example, in
the business process domain by Shepherdson et al. (2003). Here, the authors
customize the JADE-Leap framework in order to develop multi-agent-sys-
tem applications for their domain. An application framework closely related
to PROSA was discussed by Heragu et al. (2002). However, mainly control
decisions on the machine level are considered. No software development
support is discussed in this paper. Another example for an application
framework for intranet document management was suggested by Ginsburg
(1999).

However, because we have to model agent hierarchies, have to assess the
impact of new production control schemes on the manufacturing system
characteristics, and because our domain requires performance critical pro-
duction control schemes, we decided to design our own framework in order
to develop multi-agent-systems for production control purposes.

In this paper, we describe an application framework related to production
control of complex manufacturing system including all relevant software
development issues.

4 Framework design criteria

An object-oriented framework is defined as a pre-fabricated extensible set of
classes or components with pre-defined collaboration between them and
extension interfaces (Fayad et al. 1999). Thus, a framework forms a pre-
defined architecture that models the interaction between its components and
potential extensions (Fontura et al. 2002).

We differentiate between general design criteria and domain dependent
requirements that have to be considered in order to develop a generic,
flexible, scalable, and reusable architecture that fits the needs of a given
domain and takes current standards into account. Furthermore, a software
framework for multi-agent-systems additionally has to meet the require-
ments that arise from the agent point of view (Weiss 1999).

The following five major design criteria had been specified.
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(Domain) generic requirements The focus of the suggested framework is the
manufacturing control domain. Therefore, a universal architecture is not
necessary. We have to design a framework that allows treating different
organizational types of manufacturing systems in combination with a set of
different production control paradigms.

Flexibility Flexibility means that a system should be able to adapt to var-
ious circumstances. A certain degree of flexibility (caused by actions) is a
feature that a multi-agent-system has by definition (Weiss 1999). In the case
of our framework, we incorporate flexibility in the context of production
control of complex manufacturing systems.

Scalability We define scalability of production control systems developed
by the suggested framework as the possibility to increase the number of
machines and jobs without a significant loss of run time performance. This
design criterion is very important because most of the decision problems
related to production control are NP hard. Hence efficient distributed heu-
ristics have to be applied to solve these decision problems.

Reusability Software reusability is one of the major goals of developing
frameworks. In our case, software reusability is ensured by developing a
(generic) agent infrastructure, a set of basic agents, roles, and interaction
protocols.

Compatibility with existing standards The suggested framework has to
comply with FIPA standards (FIPA 2004; Mařı́k et al. 2003) for agent-based
systems as close as possible. Furthermore, the framework has to follow state
of the art middleware standards.

5 Framework architecture

In this section, we will discuss the architecture and technical details of the
ManufAg framework concerning the design criteria and requirements from
the former sections. Starting with technical details on the used middleware
we will look closer at the underlying software architecture for both infra-
structure and agents. Furthermore, we discuss organizational issues with
respect to the domain and the suggested agent architecture.

5.1 Infrastructure issues and technical details

An Agent Runtime Environment had been developed that extends the FIPA
Abstract Architecture (Mařı́k et al. 2003) to ensure compatibility with
existing standards. This runtime environment provides the infrastructure for
agent execution and allows the agents a concurrent execution on the same
host. The FIPA Abstract Architecture specifies an agent directory, a message
transport system, an agent communication language (ACL), and a service
directory as mandatory parts shown in Fig. 2.
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The agent directory is extended by our framework to enable the imple-
mentation of a distributed agent hierarchy. The service directory is modified
in a way that fits the requirements for service distribution as a consequence
of the different organizational structures existing in the manufacturing do-
main. We chose Microsoft .NET as middleware for the implementation of
the Agent Runtime Environment. .NET provides by the .NET Remoting
Framework a powerful and scalable technology for implementing a message
transport system for inter-agent communication using FIPA ACL.

Message
Transport

Service
DirectoryACL

.NET
Remoting

Distributed
Service

Directory

Distributed
Agent

Hierarchy

ACL
Content Language

Ontology

Agent
Directory

Role Based Agent Implementation

Fig. 2 FIPA abstract architecture and its usage within the framework
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Agent Management System (AMS)

Agent Management
- Create Agents
- Destroy Agents
- Migrate Agents

Directory Service (DS)

Local Organization

Remote Organization

Hierarchy Organization

Service Organization

Agent Container

Agent 1

Agent nAMS

DS

Agent Communicator

Direct Agent Communicator

Service Communicator

Fig. 3 Agent runtime environment
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Figure 3 gives an overview of our developed Agent Runtime Environ-
ment. Note that the FIPA agent directory and service directory are encap-
sulated by the directory service agent (DS). Furthermore, the message
transport and ACL processing is encapsulated by the agent communicator.
The two additional parts implemented in the runtime environment are the
agent container that holds all local agents hosted within the environment and
the agent management system (AMS) responsible for creating, destroying, or
migrating the agents hosted on that platform.

The service directory agent is important for the environment. It manages
the hierarchical as well as the local organization of the agents within a multi-
agent-system. It is also responsible for the organizational communication
with other known runtime environments. To optimize the overall system
performance, several runtime environments can run on local and remote
computers to distribute a multi-agent-system.

5.2 Communicational architecture

Communication among autonomous agents is a key feature of multi-agent-
systems to enable cooperation and coordination features. The communica-
tional part of the framework is organized in a way that makes it possible to
compose and restrict these features depending on the chosen organizational
structure of the multi-agent-system. We have to introduce communicational
rights to the multi-agent-system framework because we implement the basic
system using some kind of peer-to-peer service announcement system instead
of the FIPA suggested global directory facilitator as a single point of failure.
The suggested communicational rights are summarized in the Table 2.

The communicational rights form a relation among the agents. This rela-
tion is symmetric, i.e., when agentA has the right to communicate with agent B
then agent B can also communicate with agent A. However, due to the hier-
archical structuring of the control system the relation is not transitive.

We use the administrative part of FIPA ACL messages and also the basic
speech act types suggested by FIPA.

The DS is responsible for establishing connections between different re-
mote runtimes. If the runtimes are known to each other, the agents on these
runtimes can communicate and cooperate with respect to their communica-
tional rights. These rights are also used for publishing the agent’s services that
are provided within the multi-agent-system. As mentioned before, a peer-to-
peer service communication is utilized to distribute the different agent services
among the known runtime environments. To store the remote service infor-
mation, a local service-blackboard at each runtime is updated. Each agent can
explore this blackboard in order to find an agent offering a required service.

5.3 Single agent architecture

We define an agent as an autonomous entity that can carry out some actions
on behalf of another agent or a user. An agent can also perceive information
from its environment and tries to achieve a set of explicit or implicit goals.
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An agent mainly consists of a set of behaviors and actions defining the
agent reaction to different circumstances like incoming messages or events.
An agent observes events generated by the environment and can act within
that environment. Agent behaviors form the basis for reactivity and pro-
activity. Mainly the behaviors are used to implement agent interactions.
Therefore, the behaviors handle the message exchange between one or more
agents depending on the purpose of interaction. Furthermore, an agent
provides a set of services that can be requested by another agent. A service is
a logical envelope for a set of actions owned by an agent. As we mentioned
earlier, an agent has goals and if they are not implicitly given, explicit goals
can be defined. An agent uses its actions to fulfill its goals. We use this goal-
oriented approach to model some sort of pro-activity for each agent. Pro-
activity means that an agent itself can decide to perform an action at a
certain point of time or under certain circumstances depending on its goals.
A goal is a list of (current and future) actions, called action item list (AIL),
which is restricted to special environmental events or a given time frame. An
agent can build and modify its own AIL at runtime, i.e., to monitor some
critical actions within a given horizon or to initiate an action as a result of a
specific time or environmental event. The proposed pro-active architecture
makes it possible to implement agents that can react to specific events from
the environment and handle them. In addition, the agents are able to
interpret events and initiate itself some special actions from the AIL.

For example, a machine group agent reacts to a machine break-down of a
single machine always with a maintenance action and later starting a new
scheduling action for the jobs waiting in its queue.

Finally, an agent is part of some kind of environment, which it is con-
nected with. It observes events raised from the environment and it can act
within that environment. Figure 4 shows a UML class diagram illustrating
the basic agent architecture.

Table 2 Communicational rights of the agents

Communicational rights Description

Public The agent can communicate with other
public agents and provide its services
to all connected agent runtimes

Private The agent can communicate with other
agents only at its home runtime

Hierarchical The agent is organized within a hierarchy.
It can only communicate with its parent
and child agents

Hierarchical echelon The agent can communicate with other
agents from same echelon additionally
to the hierarchical communication rights

Cluster A multi-agent-system can be separated
into several clusters and the communication
within these clusters can be decoupled
from each other

Combined rights Several communicational rights can be
combined, i.e., the cluster right can be
combined with the hierarchical and the
hierarchical echelon right
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In order to introduce flexibility, we assign agent roles to each agent. The
role handling ability provides the key tool to introduce flexibility into the
multi-agent-system developed by using the framework. The software archi-
tecture of a single agent is designed using a role-based approach (Odell et al.
2003). An agent itself has its primary role that cannot be changed during
lifetime. Nevertheless, the agent can adopt and discard roles during runtime
if necessary. Therefore, the characteristic of an agent can differ on demand.
A new role can provide the agent with new features like services, goals, and
actions; it may assign new behaviors to the agent. These behaviors define
when and why an agent acts on special events like incoming messages,
environmental or agent state changes.

The flexibility provided by the role concept and the role handling gives a
multi-agent-system the ability to adapt to several circumstances with respect
to the manufacturing domain. A multi-agent-system for the control of
flexible manufacturing systems could be modeled using different roles for the
different capabilities of such a system and allows the reconfiguration during
runtime. Furthermore, adaptability and reconfigurability can be modeled by
the role-based implementation to enhance or expand the functionalities of an
agent-based manufacturing system to meet changes in technology without
reconfiguring the entire system.

To ensure online availability of active agents a multi-threading approach
of implementing the agent and the agent’s behavior had been developed that
allows concurrent execution. An agent can handle multiple requests from
different agents within the same context or react to different events occurring
at the same time. For example, an agent may negotiate with two agents while
it requests a service from a third agent. During that conversation, an envi-
ronmental event could occur that needs immediate treatment.

5.4 Multi-agent-system architecture

The agent architecture is the basis for the further development of a generic
multi-agent-system architecture for the manufacturing domain applying the
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Fig. 4 UML class diagram for the agent architecture
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PROSA reference architecture. As mentioned before, we have to treat dif-
ferent organizational types of manufacturing systems, i.e., job shops, flexible
job shops, and flow shops combined with several types of production control
paradigms like simple dispatching based approaches (Indrayadi et al. 2002),
distributed negotiation-based resource allocation schemes like the contract
net or several types of auctions (Srinivas et al. 2004), and more centralized
scheduling approaches like the shifting bottleneck heuristic (Mönch and
Driessel 2005).

We apply the PROSA reference architecture for holonic manufacturing
systems (Van Brussel 1998) to achieve these goals. The result of the design
process is a generic architecture describing agent hierarchies. The hierarchies
can be used for appropriately modeling of different types of manufacturing
systems (i.e., basis systems). PROSA suggests the use of decision-making and
staff agents as a starting point for further adaptation to specific production
control problems. Staff agents can be used to implement different types of
production control schemes.

Combining the single agent architecture with the multi-agent-system
architecture based on PROSA we suggest a hybrid agent architecture con-
taining reactive and deliberative approaches. The well-known hybrid archi-
tecture InteRRaP (Müller 1996) utilizes three layers within each single agent.
The first layer treats reactive situations. The second layer is a planning layer,
whereas the third layer is a cooperation layer for agent interactions. The
decision-making and staff agent approach of PROSA implemented in the
frameworks allows a hybrid layered architecture offering a separate planning
layer by the staff agents and a reactive and pro-active layer using the deci-
sion-making agents.

PROSA and the suggested layered approach is also the key to ensure
scalability for a multi-agent based control system. Scheduling algorithms
that are computationally expensive can be assigned to staff agents that can be
distributed over several powerful computers. Using this idea, it makes it
easier to adapt a production control system to different work load situations.
Hence, a good overall runtime performance can be ensured.

5.5 Pattern for decision-making and staff agents

Based on the PROSA reference architecture, we distinguish between deci-
sion-making agents and staff agents. Decision-making and staff agents are
independent of the organizational form of the multi-agent-system, i.e., we
have to consider these two types of agents both in heterarchically and in
hierarchically organized multi-agent-systems.

Decision-making agents provide the following functionality:

1. prepare decisions,
2. make decisions,
3. information support for other decision-making agents,
4. activation of other decision-making agents,
5. time driven request of results of staff agents,
6. request of services of other decision-making agents,
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7. treatment of exceptions during the preparation of a decision and during
the decision-making process,

8. check the list of future or current agent activities (AIL) for relevant en-
tries.

The functionality of decision-making agents is represented by a set of
behaviors. We describe the resulting behavior of decision-making agents in
more detail in Table 3.

The following generic functionality is provided by staff agents:

1. prepare the problem solution,
2. calculation of internal parameters of the problem solution method,
3. feed the problem solution method with data and parameters,
4. solution of the problem,
5. interruption of the solution process in an event or time driven manner,
6. providing the results of the problem to other agents,
7. treatment of exceptions during the preparation of a decision and during

the decision-making process.

Based on the previous described functionality of decision-making, we can
derive the following behavior of staff agents shown in Table 4.

Table 3 Behaviors of decision-making agents

Behavior Description

Prepare_decision_making Modeling of the preparation phase
of a certain decision

Make_decision Modeling of the decision-making phase
Inform_DM_agent Information of other decision-making

agents on certain decisions
Start_staff_agent Activation of a decision-making agent
Get_staff_agent_result Decision-making agent asks for the transfer

of results of a certain staff agent
Request_DM_agent_service Request for services from other

decision-making agents

Table 4 Behaviors of staff agents

Behavior Description

Prepare_solution Modeling of the preparation phase
of a certain solution activity

Parameterize_algorithm Parameterization of a certain solution
algorithm with external or internally
determined parameters

Solve_or_interrupt Determination of (feasible) solution
of the problem under consideration.
The decision-making agent can terminate
the solution process

Communicate_solution The decision-making agent that requests
the solution of a certain problem
will be informed on the obtained solution
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Interaction between decision-making agents and staff agents can be de-
scribed in a rather generic way. The actions of a certain agent can be de-
scribed by behavior states. Transitions from one state to another are
required in order to perform an action. Transitions are triggered by certain
events or other pre-conditions. Due to space limitations, we do not describe
the states of each behavior. But we explain the interaction between decision-
making and staff agents by means of UML sequence diagrams. In Figs. 5
and 6, we present the interaction between decision-making agents and staff
agents from a decision-making agent point of view. We represent each single
behavior by a separate class. We describe the state transitions of each single
behavior by using the self-delegation mechanism from UML sequence dia-
grams. We also show the used speech act types according to FIPA ACL.

We present the interaction between staff agents and decision-making
agents from a staff agent point of view in a similar way in Fig. 7.

5.6 Organization of multi-agent-systems

5.6.1 Federated agent organization

Federated structures of multi-agent-systems for production control are
usually used to generate agent systems without any central control. Nego-
tiations using contract-nets as well as auction-based solutions are widely
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[Informe-Done]
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Request_Service

Wait_For_Request_Service_Result

Start_Service
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Wait_For_Done
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Fig. 5 Interaction of decision-making and staff agent I
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accepted problem solvers within multi-agent-systems. Supporting federated
structures is essential for multi-agent frameworks as well as providing tem-
plates for the coordination processes like contract nets. Based on the
architecture for staff and decision-making agents another point of view can
be added to such flat structured organizations by allowing algorithmic ap-
proaches to be added to the cooperation schemes.

Usually, a large number of low-level agents form a complex system with
difficult and hard to predict system behavior. However, for smaller problems
like a single work center, federated organization for dispatching and
scheduling jobs on the machines could be an appropriate way.

5.6.2 Hierarchical agent organization

To tackle the problem of complexity, hierarchical agent structures are
introduced to achieve a predictable and under global aspects favorable
system behavior (Mesarovic et al. 1970; Schneeweiss 2003).

Based on the PROSA reference architecture for holonic manufacturing
systems, a top-down tree-like agent hierarchy can be build. Figure 8 shows a
general agent hierarchy. From the control point of view the hierarchical
decomposition means that the upper layers provides control guidelines for
the next level below by means of feed forward instructions. The lower level
uses these guidelines for its decision-making process. On the other hand,
feedback cycles are possible that influences the upper decision-making
entities.

Another important feature of this approach is that the different control
strategies achieved by the implemented layers are distributed in spatial and
temporal manner and allows, in principle, a concurrent decision-making by
agents at the same or different echelons (cf. Mesarovic et al. 1970 for the
notation of echelons in hierarchical systems).

Agent 1
(echelon 1)

Agent 1.3
(echelon 2)

Agent 1.2
(echelon 2)

Agent 1.1
(echelon 2)

... ... ... ... ...

Agent 1.1...n.1
(echelon n)

Agent 1.1...n.1
(echelon n)

Agent 1.1...n.1
(echelon n)

Agent 1.1...n.1
(echelon n)

Agent 1.1...n.1
(echelon n)

Process Level

Agent at echelon n

Communication Direction

Optional Communication

Fig. 8 Hierarchical organization of a multi-agent-system
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A hierarchical architecture is a powerful way to map the organizational
structure of production control systems to an agent-based system with dif-
ferent levels of competence (Schneeweiss 2003). A chain of responsibility can
be build through the whole hierarchy to decompose a production control
problem into different sub problems and use the solutions obtained from
agents above and below in the hierarchy to get a better overall solution with
respect to the global design goals of the production control systems. Usually,
the granularity of the decision problem decreases with the hierarchy level of
the agent. Agents at the upper levels of the hierarchy modify goals or the
decision space of decision problems by the lower level decision-making
agents. Furthermore, direct instructions expressed through actions to be
performed are also possible. The later approach is called primal coordination
in coordination theory, whereas the first approach is called image coordi-
nation or dual coordination (Mesarovic et al. 1970).

Despite the hierarchical structure and the communication restrictions
among the levels, there is no rigid master slave relationship between an agent
and its parent or child agent. Feedback cycles are established where the
parent agent modify its solutions tacking into account the more detailed
solution of its child agents.

When a hierarchical organization of an agent-based manufacturing con-
trol system implemented by using the ManufAg framework is the preferred
solution, then this choice is not necessarily absolute for all agents. A hier-
archically organized production control system is usually divided into two
classes of agents. Hierarchy agents serve within a hierarchy of agents either
as a parent agent or child or both and can only communicate and cooperate
with agents in adjacent levels. Hierarchy free agents are not part of any
hierarchy; they are able to interact with all agents at an arbitrary hierarchy
level. This is important for agents that represent entities that usually move
through a production systems like jobs or provide over time changing pro-
cess related information.

In order to build a distributed agent hierarchy across different platforms, a
unique identifier, called hierarchy identifier (HI), is introduced. This identifier
is the organizational knowledge base for each agent. It provides the agents
with a system wide unique hierarchy name that does not depend on the
runtime where the agent is hosted. Furthermore, the HI stores the potential
parent agent of a hierarchically organized agent and keeps track of its sub-
sidiary child agents. The hierarchical organization of the agents is performed
automatically as soon as an agent gets alive. The hierarchical organization
system owned by each single runtime helps the agent to find its place within
the hierarchy by looking for the appropriate parent and child agents.

The following announcement protocol shown in Fig. 9 makes them known
each other. The child agent is responsible for the hierarchy announcement. It
sends a request for registration to its parent agent. If the parent agent agrees
to the request it organizes its new child agent within its local child repository.
Both agents are now able to communicate with each other.

Another aspect of the hierarchical organization is the access to the ser-
vices provided by the agents. The services have to be organized similar to the
formed hierarchy with restricted access depending on the type of the agent
and its level in the hierarchy.
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5.6.3 Cluster organization

A clustered organization can be established by using the ability of connecting
multiple runtimes and the clustering of communication rights. This form of
organization can be utilized to structure a large number of agents into sev-
eral sub organizations related to a given context and with a proxy agent as
interface for such a sub organization. The clustering of agents within several
contexts is useful to define areas or scopes that cannot be organized within a
hierarchy, for example a supply chain network. This approach is similar to
the concepts of holons (Mařı́k et al. 2002; Fischer et al. 2003). Hence, it is
possible to integrate such a cluster into a hierarchy of agents by adding the
proxy agent to the hierarchical structure. Figure 10 shows an example for a
cluster organization of a hierarchically organized multi-agent-system and a
federated agent system.

5.7 Ontological and content language support

Ontology and content language are important features to allow for a
meaningful communication of different agents. We refer to ontologies as a
conceptualization of a domain (Obitko and Mařı́k 2002), i.e., we use mainly
the terminological component of an ontology. Due to the wide-spread
range of problems within the manufacturing domain and the required

Fig. 10 Example for cluster organization

ChildAgent ParentAgent

Parent Agent active
REQUEST - Register Child Agent

REFUSE - Register Child Agent

AGREE - Register Child Agent

Error Handling Organize Child Agent

[Agreed]

Fig. 9 Hierarchical announcement
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problem-specific ontological expressions, we did not integrate a domain
dependent ontology into the ManufAg framework. Nevertheless, we provide
a flexible and customizable approach for ontology support. There is no
prescription of how an ontology should look like. As a minimum require-
ment, it must be possible to convert the elements of the used ontology into
.NET compatible class structures that can be interpreted by an agent. An
Ontology description element has to be defined additionally in order to label
the ontology, integrate the ontology into the system, and publish it to the
agents. A similar approach is chosen for providing content language support.
A Codec element has to be implemented that encapsulates the decoding and
encoding of a message using the implemented content language. Note that
each agent can handle more than one ontology and content language by
using its content handler. Each conversation has to refer to the used
ontology and content language.

Ontologies for the complex manufacturing system domain can be derived
from the broader ontologies Enterprise Ontology (Uschold et al. 1998) and
OZONe (Smith and Becker 1997). Furthermore, it is possible to use derivates
from the general purpose FIPA content languages SL0 or SL1 (see FIPA
2004 for more details).

5.8 Framework issues

We discuss design decisions for our framework from a software engineering
point of view. Note that these decisions are strongly influenced by the sug-
gested multi-agent-system architecture. We can distinguish between white-
box, black-box, and grey-box frameworks (Fayad et al. 1999). A white-box
framework provides a set of abstract classes and interfaces without a
meaningful default implementation, while a black-box framework consists of
classes that could be customized by composition techniques and parameter
settings. A grey-box framework can be considered as a mixture of both types
(Fayad et al. 1999).

The ManufAg framework is designed as a grey-box framework mainly
influenced by the manufacturing control domain. As pointed out in the
domain analysis section, we can differentiate between constant and flexible
domain properties. Usually, we use black-box constructs for constant do-
main properties while white-box techniques are exploited for flexible domain
properties.

A set of agent roles and agent interactions are provided by using black-
box components because of the constant character of the relationship be-
tween the different elements of a manufacturing system and the related
production control system, i.e., there will be always jobs and resources for
processing the jobs as well as schedules and decision-making entities that
determine these schedules. The relationship between these elements is pre-
scribed by PROSA. Therefore, these entities can be modeled using black-box
techniques.

It is necessary to provide a certain degree of flexibility in order to meet the
characteristics of specific production control applications. White-box classes
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are used for the purpose of developing new roles for agents and the inter-
action relationships between them to meet requirements that could not be
modeled by using the black-box components because they are too specific for
certain applications. These elements are composed to a software-architecture
that allows a smooth operation for all agent and non-agent parts of the
production control system that has to be developed. Table 5 gives an over-
view of the main elements of the framework and its relationship with respect
to the type of the framework.

6 Case study: FABMAS

FABMAS is a hierarchically organized multi-agent-system for production
control of semiconductor manufacturing processes. It was developed based
on the ManufAg framework. Semiconductor manufacturing is an example
for a complex manufacturing process (cf. Atherton and Atherton 1995;
Uzsoy et al. 1994). It includes a large number of machines (up to 1,000), an
over time changing product mix, sequence-dependent setup times, a mix of
different process types, for example batch processes, customer related due

Table 5 Features and framework class categorization

Feature Type Comment

Agent Grey-box Each agent needs a main role and can be
customized by additional roles.
Almost ready to run agents for common
purposes that can be parameterized

Agent role Grey-box Either a black-box approach using
pre-defined roles or a white box approach
if new roles for special purposes
are needed is supported

Behavior Grey-box Some behaviors are provided
with the framework. Other behaviors
must be derived from base classes

Agent goals White-box Goals are given implicitly or explicitly.
The framework specifies a structure
for goal description using the AIL

Agent tasks White-box Implementation depends on agent goals
and its specialization. Only a rough
structure is provided

Scenarios Black-box Scenarios encapsulate a specific interaction
between different agents and consist
of pre-defined behaviors, agent goals,
and tasks that can be parameterized

Ontology Grey-box A basic ontology for management
purpose is provided and can be extended.
Other ontologies can be added on demand

Communication
language

Black-box The communication language serves
as a technical container for agent
communication. It is standardized
by using FIPA ACL

Content language White-box A content language can be added
by implementing a specific codec
that supports the language
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dates of the jobs, preventive maintenance tasks because of complicated
machinery, and frequent machine break-downs.

A three-layer hierarchical production control approach is suggested for
the FABMAS system due to the physical decomposition of the shop-floor of
a semiconductor wafer fabrication facility (wafer fab) into work areas and on
the next level into machine groups that contain parallel machines. Hierar-
chical communicational rights are applied due to the structure of the feed-
back enabled scheduling process. Production control guidelines and
schedules are communicated top-down while process information is provided
bottom-up.

On the top layer we use a beam-search-type algorithm (Habenicht and
Mönch 2002) in order to assign planned start and completion dates to so
called macro operations. A single macro operation consists of a certain
number of consecutive process steps that are assigned to process in a fixed
work area. Then, we use the macro operation related start and completion
dates to determine detailed schedules for the jobs in each single work area.
Here, we use a distributed variant of the shifting bottleneck heuristic in order
to carry out the detailed scheduling of the jobs (Mönch and Driessel 2005).
We solve scheduling problems for the jobs in each single work area via the
shifting bottleneck heuristic (Pinedo 2002). Therefore, we assign a scheduling
agent for the shifting bottleneck heuristic to each single work area agent. We
exchange the planned start and end dates of the jobs between the work areas
in order to improve the work area schedules with respect to the overall total
weighted tardiness on the entire wafer fab. The (rigid) hierarchical com-
munication rights are extended to allow interactions between the different
work area decision-making agents at the work area echelon.

We use the following decision-making agents in the FABMAS system due
to the hierarchical decomposition of the manufacturing system:

– single production system agent,
– multiple work area agents,
– multiple machine group agents.

These agents are implemented by using agents with hierarchical organi-
zation abilities while the organizational structure is given by the underlying
semiconductor wafer fabrication facility model.

The following agents represent dynamic entities of the manufacturing
system and are not part of a hierarchy and free of any communicational
restrictions:

– each job agent represents a single job,
– batch agents are used to model batches, i.e., a temporary set of jobs with
the goal to process the jobs simultaneously on the same machine.

We avoid the modeling of products by product agents.
The appropriate staff agents are represented as child agents for the

decision-making agents. They are described in Table 6.
A specific ontology (Mönch and Stehli 2003) and content language

(Mönch and Stehli 2004) for production control in the semiconductor
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manufacturing domain are developed. The ontology contains more than 100
domain concepts and takes into account the hierarchical production control
approach. The content language relies on a context free grammar and uses
appropriate XML objects that are derived from the domain concepts de-
scribed in the ontology. The FABMAS system is completed by a blackboard
that is between the agent-based production control system and the discrete
event simulation tool AutoSched AP. We summarize the adaptation and
extension of ManufAg that leads to the FABMAS prototype in Fig. 11.

The FABMAS system was successfully applied to certain reference sim-
ulation models of semiconductor wafer fabrication facilities to improve on-
time-delivery performance. The MIMAC I model (Fowler and Robinson
1995) consists of over 200 machines that are organized in about 80 different
machine groups. The machine groups form five work areas. According to
this structure of the manufacturing system, we run the FABMAS system
distributed on five PC’s. We required computation time for one scheduling
decision of the entire manufacturing system requires two up to 6 min on
2.4 GHz Pentium-IV PC’s with 256 MB RAM and an Ethernet network with
100 Mbit/s. The FABMAS scheduling approach clearly outperforms pure
dispatching schemes like first in first out (FIFO) or earliest due date (EDD)
with respect to the performance measure total weighted tardiness in case of a
heavy load of the wafer fab and of tight due dates of the jobs. For a more
detailed description of the FABMAS prototype and also for computational
experiments and results we refer to (Mönch et al. 2005).

7 Conclusions

In this paper, we outline a framework for multi-agent-systems for production
control in the complex manufacturing domain. Based on a requirement
analysis, we describe framework design criteria. We present an approach for
the hierarchical organization of the multi-agent-systems using our frame-
work. Furthermore, we describe a generic architecture for the implementation

Table 6 Decision-making agents and staff agents within the FABMAS system

Decision-making
agent

Staff agent Description

Production
system agent

Job planning agent Determines job plans
Production system
monitoring agent

Determines certain performance
measures on the shop floor level

Work area agent Work area
scheduling agent

Determines detailed schedules
for the jobs of one single work area

Work area
monitoring agent

Determines certain performance
measures on the work area level

Machine
group agent

Machine group
monitoring agent

Determines certain performance
measures on the machine group level

Machine group
mediator agent

Mediator in contract net type
resource allocation schemes

Job (batch) agent Machine group
mediator agent

Mediator in contract net type
resource allocation scheme
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of decision-making and staff agents that allows for a flexible integration of
different control strategies. We finish the paper by indicating the use of the
ManufAg framework for the implementation of an agent-based production
control application for semiconductor manufacturing processes.

The suggested ManufAg framework fulfills the five major design criteria
from sect. 4. We designed a framework that can be used for the implemen-
tation of both hierarchical and heterarchical organized production control
systems. Therefore, different organizational types of manufacturing systems
and related production control paradigms are supported by ManufAg. Be-
cause of the used differentiation in decision-making and staff agents and the
suggested role-based approach the right degree of flexibility is obtained by
the framework. The staff agents allow, in principle, for an implementation of
distributed production control approaches. Hence, the suggested framework
leads to scalable production control applications. The suggested infrastruc-
ture, the basic agents and roles, and the interaction protocols can be reused.
ManufAg complies with state of the art middleware standards and with
FIPA standards by using the .NET remoting framework and parts of the
FIPA abstract architecture for ManufAg.

In future research, we try to use the framework for the implementation of
an agent-based production control approach for flexible manufacturing
systems. Furthermore, it is challenging to develop agent-based production
control systems that combine scheduling and automated material handling
issues based on the ManufAg framework.

Extending the framework by adaptive features is a logical next step for
future research. Therefore, it seems to be necessary to consider specific staff
agents that have machine learning capabilities and can be used to support a

ManufAg: Runtime Environment, Abstract Classes for Agents, Roles,  Behavior Modeling, Representation of
Hierarchies, Interaction of Decision-Making and Staff Agents, Basic Ontology and Content Language Support

(C# classes)

Blackboard-Type Datalayer (C++ Classes)

Simulation Engine and Simulation Model (AutoSched AP)  (C++ Classes)

FABMAS Decision-Making
Agents: Production System
Agent, Work Area Agents,
Machine Group Agent, Job
(Batch) Agent (C# classes)

FABMAS Staff Agents:
Job Planning Agent, Work Area Scheduling

Agents, Monitoring Agents, Contract Net-Type
Ressource Allocation Scheme (C# and C++

Classes)

FABMAS Ontology and
Content Language, Specific

Interaction Protocolsbetween
Work Area Agents and

Production System Agent (C#
classes and XML objects)

Fig. 11 Customization of the ManufAg framework that leads to FABMAS
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situation specific parameterization of other staff agents. Neural networks
and decision trees seem to be appropriate.
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Ünver HO, Anlagan O (2002) Design and implementation of an agent-based shop floor
control system using windows-DNA. Int J Comput Integr Manuf 15(5):427–439

Uschold M, King M, Moralee S, Zorgios Y (1998) The enterprise ontology. Knowl Eng
Rev 13(1):31–89

Van Brussel H, Wyns J, Valckenaers P, Bongaerts L, Peeters P (1998) Reference archi-
tecture for holonic manufacturing systems: PROSA. Computers in industry. Spec Issue
Intell Manuf Syst 37(3):225–276

Vrba P (2003) Java-based agent platform evaluation. Proceedings first international con-
ference on industrial application of holonic and multi-agent-systems (HoloMas 2003),
LNAI 2744, Springer, Prague, Czech Republic, pp 47–58

Uzsoy R, Lee C-Y, Martin-Vega LA (1994) A review of production planning and sched-
uling models in the semiconductor industry, Part II: Shop-floor control. IIE Trans
Scheduling Logistics 26(5):44–55

Weiss G (ed) (1999) Multiagent systems: A modern approach to distributed artificial
intelligence. MIT Press, Cambridge, MA

ZEUS (2004) http://more.btexact.com/projects/agents/zeus/, 2004-11-18

ManufAg: a multi-agent-system framework for production control 185



www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Sec1
	Sec2
	Sec3
	Fig1
	Sec4
	Sec5
	Tab1
	Sec6
	Sec7
	Sec8
	Fig2
	Fig3
	Sec9
	Sec10
	Tab2
	Sec11
	Fig4
	Sec12
	Tab3
	Tab4
	Sec13
	Sec14
	Fig5
	Fig6
	Fig7
	Sec15
	Fig8
	Sec16
	Sec17
	Fig10
	Fig9
	Sec18
	Sec19
	Tab5
	Sec20
	Tab6
	Fig11
	Ack
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR46
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45

